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Abstract. The spontaneous generation of magnetic and chromomagnetic fields at high temperature in the
minimal supersymmetric standard model is investigated. The consistent effective potential including the
one-loop and the daisy diagrams of all bosons and fermions is calculated and the magnetization of the
vacuum is observed. The mixing of the generated fields due to the quark and s-quark loop diagrams and
the role of superpartners are studied in detail. It is found that the contribution of these diagrams increases
the magnetic and chromomagnetic field strengths as compared with the case of a separate generation of
fields. The magnetized vacuum state is found to be stable due to the magnetic masses of gauge fields
included in the daisy diagrams. Applications of the results obtained are discussed. A comparison with the
standard model case is given.

1 Introduction

The possible existence of strong magnetic fields in the
early universe is one of the most interesting problems in
high-energy physics. Different mechanisms of the fields at
work at different stages of the universe’s evolution were
proposed. These mechanisms as well as the role of strong
magnetic fields have been discussed in the surveys of [1–
3]. In particular, primordial magnetic fields, being imple-
mented in a cosmic plasma, may serve as the seeds for the
present extra-galaxy fields.

The spontaneous vacuum magnetization at high tem-
perature is one of the mechanisms mentioned. It was al-
ready investigated both in pure SU(2) gluodynamics [4–6]
and in the standard model (SM) [7] where the possibility
of this phenomenon has been shown. The stability of the
magnetized vacuum state was also studied [6]. The mag-
netization takes place for the non-abelian gauge fields due
to vacuum dynamics. In fact, this is one of the distin-
guishable features of asymptotically free theories [6,8]. In
[4–6] the fermion contributions were not taken into con-
sideration. However, at high temperature they affect the
vacuum considerably. Quarks possess both electric and
color charges, and therefore the quark loops change the
strengths of the simultaneously generated magnetic and
chromomagnetic fields [7].

In a supersymmetric theory new peculiarities should
be accounted for. First there is the influence of superpart-
ners. These particles having a low spin have to decrease
the generated magnetic field strengths. Second, s-quarks
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also possess electric and color charges, so the interdepen-
dence of magnetic and chromomagnetic fields is expected
to be stronger as well as the fields due to their vacuum
loops. Because of this mixing some specific configurations
of the fields must be produced at high temperature.

In the present paper the spontaneous vacuum mag-
netization is investigated in the minimal supersymmetric
standard model (MSSM) of the elementary particles. All
boson and fermion fields are taken into consideration. In
the MSSM there are two kinds of non-abelian gauge fields
– the SU(2) weak isospin gauge fields responsible for weak
interactions and the SU(3) gluons mediating the strong
interactions. Magnetic and chromomagnetic fields are re-
lated to these symmetry groups, respectively. To elaborate
this problem we calculate the effective potential (EP) in-
cluding the one-loop and the daisy diagram contributions
in constant abelian chromomagnetic and magnetic fields,
Hc = const and H = const, at high temperatures. The
values of the generated field strengths are found as the
minimum position of the EP in the field strength plane
(H, Hc).

Let us note the advantages of the approximation used.
The EP of the background abelian magnetic fields is a
gauge fixing independent one, while the daisy diagrams
account for the most essential long-range corrections at
high temperature. Therefore, such a type of EP includes
the leading and the next-to-leading terms in the coupling
constants. Moreover, as it was shown in [6,9], the daisy
diagrams of the charged gluons and the W -bosons with
their magnetic masses taken into consideration make the
vacuum with non-zero magnetic fields stable at high tem-
peratures. This stability reflects the consistency of the ap-
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proximation. The EP of this type was used recently in
investigations of the electroweak phase transition in an
external hypercharge magnetic field [10] and the sponta-
neous generation of magnetic and chromomagnetic fields
in the SM [7]. The obtained results are in good agreement
with the non-perturbative calculations carried out in [11,
12]. This approximation will be used in what follows.

The abelian hypercharge magnetic field is not gener-
ated spontaneously. So, in our investigation we shall con-
sider the non-abelian constituent of the magnetic field
coming from the SU(2) gauge group. The generation
mechanisms of the hypermagnetic field were studied in
[9,13]. Below it will be shown that at high temperatures
either strong magnetic or chromomagnetic fields are gen-
erated in the MSSM, similarly to the SM. The sector ad-
ditional to the SM sector of the MSSM, the s-particle
sector, does not suppress this effect. It just decreases the
strengths of the generated fields. These fields are stable
in the approximation adopted due to the magnetic masses
m2

transversal ∼ (gH)1/2T of the gauge field transversal
modes [14]. In this way a consistent picture of the magne-
tized vacuum state is derived.

The contents of this paper are as follows. In Sect. 2
the contributions of all bosons and fermions to the EP
v′(H, T ) of external magnetic and chromomagnetic fields
are calculated in a form convenient for numeric investi-
gations. In Sect. 3 the field strengths are calculated. A
discussion and concluding remarks are given in Sect. 4.

2 Basic formulae

The full Lagrangian of the MSSM can be written as ([15])

L = Lgs + Lḡs + Lleptons + Lsleptons + Lq + Lsq (1)
+ LHiggs + Lhiggsino + Lint + LSSB + Lgf .

Here, Lgs and Lḡs is the kinetic part of gauge bosons
and gauginos, correspondingly; Lleptons, Lsleptons, Lq and
Lsq give the kinetic part of the matter (fermions and s-
fermions) fields and their interaction Lagrangians; LHiggs
is the kinetic part and the Higgs interactions with gauge
bosons and gauginos; Lint contains the interaction terms;
LSSB is the soft-symmetry breaking (SSB) part; Lgf is the
gauge fixing terms.

In the MSSM there are mixings in the higgsino and
gaugino sector resulting in the presence of chargino (mix-
ing of charged higgsino and gaugino) and neutralino (mix-
ing of neutral higgsino and gaugino) in the theory. Since
the electrical and color neutral particles are not interact-
ing with magnetic and chromomagnetic fields, we will not
take the neutralino into consideration.

The MSSM Lagrangian of the gauge boson sector is [15]

Lgs = −1
4
Fα

µνFµν
α − 1

4
GµνGµν − 1

4
Fα

µνF
µν
α , (2)

where the following standard notation is introduced:

Fα
µν = ∂µAα

ν − ∂νAα
µ + gεabcAb

µAc
ν , (3)

Gµν = ∂µBν − ∂νBµ,

Fα
µν = ∂µAα

ν − ∂νAα
µ + gsf

abcAb
µA

c
ν .

The fields corresponding to the gauge W -, Z-bosons and
photons, respectively, are

W±
µ =

1√
2
(A1

µ ± iA2
µ), (4)

Zµ =
1√

g2 + g′2 (gA3
µ − g′Bµ),

Aµ =
1√

g′A3
µ + gBµ

,

and Aα
µ is the gluon field.

As usually, the introduction of gauge fields is done by
replacing all derivatives in the Lagrangian with the covari-
ant ones,

∂µ → Dµ = ∂µ + ig
τα

2
Aα

µ + igs
λα

2
Aα

µ. (5)

Here τα and λα stand for the Pauli and the Gell-Mann
matrices, respectively.

In the SU(2) sector there is only one magnetic field,
the third projection of the gauge field. In the SU(3)c sector
there are two possible chromomagnetic fields connected
with the third and the eighth generators of the group.

For simplicity, in what follows we shall consider the
field associated with the third generator of SU(3)c.

To introduce the interaction with classical magnetic
and chromomagnetic fields, we split the potentials in two
parts:

Aµ = Āµ + AR
µ , (6)

Aµ = Āµ + AR
µ ,

where AR and AR describe the radiation fields and Ā =
(0, 0, Hx1, 0) and Ā = (0, 0,H3x

1, 0) correspond to the
constant magnetic and chromomagnetic fields directed
along the third axes in the space and in the internal color
and isospin spaces.

To construct the total EP we used the general rela-
tivistic renormalizable gauge which is set by the following
gauge fixing conditions [16]:

∂µW±µ ± ieĀµW±µ ∓ i
gφc

2ξ
φ± = C±(x), (7)

∂µZµ − i
ξ′ (g

2 + g′2)1/2φcφZ = CZ(x),

∂µAµ + igsĀ = C(x),

where e = g sin θW, tan θW = g′/g, φ± and φZ are the
Goldstone fields, ξ and ξ′ are the gauge fixing parameters,
C± and CZ are arbitrary functions and φc is the value
of the scalar field condensate. Setting ξ, ξ′ = 0 we choose
the unitary gauge. In the restored phase the scalar field
condensate φc = 0 and the equations (7) are simplified.

The values of the macroscopic magnetic and chromo-
magnetic fields generated at high temperature will be cal-
culated by minimization of the thermodynamic potential
Ω which is introduced as follows:
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Ω = − 1
β

logZ, (8)

Z = Tr exp(−βH), (9)

where Z is the partition function, and H is the Hamilto-
nian of the system. The trace is calculated over all physical
states.

To obtain the EP one has to rewrite (8) as a sum in
quantum states calculated near the non-trivial classical so-
lutions Aext and Aext. This procedure is well-described in
the literature (see, for instance, [6,17,18]), and the result
can be written in the form

V = V (1)(H,H3, T ) + V (2)(H,H3, T ) + . . . (10)
+ Vdaisy(H,H3, T ) + . . . ,

where V (1) is the one-loop EP; the other terms present
the contributions of two-, three-, etc. loop corrections.

Among these terms there are some responsible for the
dominant contributions of long distances at high temper-
ature – the so-called daisy or ring diagrams (see, for ex-
ample, [17]). This part of the EP, Vdaisy(H,H3, T ), is non-
zero in the case that massless states appear in a system.
The ring diagrams have to be calculated when the vac-
uum magnetization at finite temperature is investigated.
In fact, one first must assume that the fields are non-
zero, calculate the EP V (H,H3, T ) and after that check
whether its minimum is located at non-zero H and H3. On
the other hand, if one investigates problems in the applied
external fields, the charged fields become massive with the
masses depending on ∼ (gH)1/2, ∼ (gsH3)1/2 and have to
be omitted.

The one-loop contribution to the EP is given by the
expression

V (1) = −1
2
TrlogGab, (11)

where Gab stands for the propagators of all quantum fields
W±, A, . . . in the background fields H and H3. In the
proper time formalism, the s-representation, the calcula-
tion of the trace can be carried out in accordance with the
formula [19]

TrlogGab = −
∫ ∞

0

ds

s
tr exp(−isG−1

ab ). (12)

Details of calculations based on the s-representation and
formula (13) can be found in [20–22].

To incorporate the temperature into this formalism in
a natural way, we make use of the method of [20] which
connects the Green functions at zero temperature with the
Matsubara Green functions,

Gab
k (x, x′; T ) (13)

=
+∞∑
−∞

(−1)(n+[x])σkGab
k (x − [x]βu, x′ − nβu),

where Gab
k is the corresponding function at T = 0, β =

1/T , u = (0, 0, 0, 1), [x] denotes the integer part of x4/β,
σk = 1 in the case of physical fermions and σk = 0 for

boson and ghost fields. The Green functions on the right-
hand side of (13) are the matrix elements of the operators
Gk computed in the states |x′, a〉 at T = 0, and on the
left-hand side the operators are averaged over the states
with T �= 0. The corresponding functional spaces U0 and
UT are different but in the limit of T → 0 UT transforms
into U0.

The terms with n = 0 in (13) and (11) give the zero-
temperature expressions for the Green functions and the
EP V ′, respectively. So we can split the latter into two
parts:

V ′(H,H3, T ) = V ′(H,H3) + V ′
τ (H,H3, T ). (14)

The standard procedure to account for the daisy diagrams
is to substitute the tree level Matsubara Green functions
in (11), [G(0)

i ]−1, by the full propagator G−1
i = [G(0)

i ]−1 +
Π(H, T ) (see for details [6,17,18]), where the last term is
the polarization operator at finite temperature in the field
taken at zero longitudinal momentum kl = 0.

Omitting the detailed calculations we notice that the
exact one-loop EP is transformed into the EP which con-
tains the daisy diagrams as well as the one-loop diagrams
if one adds to the exponent a term containing the temper-
ature dependent mass of a particle.

It is convenient for what follows to introduce the di-
mensionless quantities: x = H/H0 (H0 = M2

W /e), y =
H3/H0

3 (H0
3 = M2

W /gs), β = MW /T and v = V/H2
0 .

The total EP consists of several terms:

v′ =
x2

2
+

y2

2
+ v′

leptons + v′
q + v′

W−bosons + v′
gluons

+ v′
sleptons + v′

sq + v′
charginos + v′

gluinos. (15)

These terms can be written down as follows (in dimen-
sionless variables).

SM sector

Leptons

v′
leptons = − 1

4π2

∞∑
n=1

(−1)n

∫ ∞

0

ds

s3 (16)

× e−(m2
leptonss+(β2n2)/(4s))(xsCoth(xs) − 1).

Quarks

v′
q = − 1

4π2

6∑
f=1

∞∑
n=1

(−1)n

∫ ∞

0

ds

s3 e−(m2
f s+(β2n2)/(4s)) (17)

× (qfxsCoth(qfxs) · ysCoth(ys) − 1).

W -bosons
See [23].

v′
W = − x

8π2

∞∑
n=1

∫ ∞

0

ds

s2 e−(m2
W s+(β2n2)/(4s)) (18)

×
[

3
Sinh(xs)

+ 4Sinh(xs)
]

.



604 V.I. Demchik, V.V. Skalozub: The spontaneous generation of magnetic fields at high temperature

Gluons

See [6].

v′
gluons = − y

4π2

∞∑
n=1

∫ ∞

0

ds

s2 e−(m2
gluonss+(β2n2)/(4s)) (19)

×
[

1
Sinh(ys)

+ 2Sinh(ys)
]

.

MSSM sector

s-leptons

v′
sleptons = − 3

4π2

∞∑
n=1

∫ ∞

0

ds

s3 e−(m2
sleptonss+(β2n2)/(4s)) (20)

×
[

xs

Sinh(xs)
− 1

]
.

s-quarks

v′
sq = − 1

8π2

∞∑
n=1

∫ ∞

0

ds

s3 e−(m2
sqs+(β2n2)/(4s)) (21)

×
[

qfxs · ys

Sinh(qfxs) · Sinh(ys)
− 1

]
.

Charginos

v′
charginos = − 1

4π2

∞∑
n=1

(−1)n

∫ ∞

0

ds

s3 (22)

× e−(m2
charginoss+(β2n2)/(4s))(xsCoth(xs) − 1).

Gluinos

v′
gluinos = − 1

4π2

∞∑
n=1

(−1)n

∫ ∞

0

ds

s3 (23)

× e−(m2
gluinoss+(β2n2)/(4s))(ysCoth(ys) − 1).

Here, mleptons, mf , mW , mgluons, msleptons, msq,
mcharginos and mgluinos are the dimensionless temperature
masses of leptons, quarks, W -bosons, gluons, s-leptons,
s-quarks, charginos and gluinos, respectively;

qf =
(

2
3
, −1

3
, −1

3
,
2
3
, −1

3
,
2
3

)

are the charges of the quarks.
Since we investigate the high-temperature effects con-

nected with the presence of external fields, we used terms

leading in temperature of the Debye masses of the parti-
cles only [6,23].

In the present analysis the temperature masses of lep-
tons, quarks, s-leptons, s-quarks, charginos, gluinos are
taken as follows [7]:

m2
leptons =

(
e

β

)2

, m2
f =

(
e

β

)2

, (24)

m2
sleptons =

(
e

β
+

Msl

MW

)2

, m2
sq =

(
e

β
+

Msq

MW

)2

,

m2
charginos =

(
e

β
+

Mch

MW

)2

, m2
gluinos =

(
e

β
+

Mgl

MW

)2

,

where the masses from the SSB terms are taken as the low
experimental limits of the corresponding particle masses
[24]

Msl = 40 GeV, Msq = 176 GeV,

Mch = 62 GeV, Mgl = 154 GeV. (25)

As it was established in numeric computation the spon-
taneous generation of fields depends on the SSB masses
fairly weakly. Even in the case of zero SSB masses there
is the generation of magnetic and chromomagnetic fields.
In the limit of infinite SSB masses the picture conforms
to the SM case.

The temperature masses of gluons and W -bosons are
[6,7,14]

m2
W = 15αEW

x1/2

β
, m2

gluons = 15αs
y1/2

β
; (26)

αEW and αs are the electroweak and the strong interaction
couplings, respectively.

In one-loop order, the neutral gluon contribution is
a trivial H3-independent constant which can be omitted.
However, these fields are long-range states and they do
give a H3-dependent EP through the correlation correc-
tions depending on the temperature and field. We include
the longitudinal neutral modes only because their Debye
masses Π0(y, β) are non-zero. The corresponding EP is [6]

vring =
1

24β2 Π0(y, β) − 1
12πβ

(
Π0(y, β)

)3/2
(27)

+

(
Π0(y, β)

)2

32π2

[
log

(
4π

β(Π0(y, β))1/2

)
+

3
4

− γ

]
;

γ is Euler’s constant, Π0(y, β) = Π0
00(k = 0, y, β) is the

zero–zero component of the neutral gluon field polariza-
tion operator calculated in the external field at finite tem-
perature and taken at zero momentum [6],

Π0(y, β) =
2g2

3β2 − y1/2

πβ
− y

4π2 . (28)

Equations (15)–(23) and (27) will be used in numeric
calculations.
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3 Combined generation of magnetic
and chromomagnetic fields

To calculate the strengths of the combined generated mag-
netic and chromomagnetic fields we use the perturbative
computation method in [7]. First of all we find the
strengths of the fields x and y when the quark and the s-
quark contributions (v′

q) are divided in two parts, v′
q(x, β)

= v′
q |y→0 and v′

q(y, β) = v′
q |x→0, where v′

q(x, β) is the
quark and s-quark contribution in the case of a single
magnetic field, and v′

q(y, β) is the one in the presence of
a chromomagnetic field only.

Now let us rewrite v′ in (15) as follows:

v′(x̄, ȳ) = v1(x̄) + v2(ȳ) + v3(x̄, ȳ), (29)

where x̄ = x + δx, ȳ = y + δy, and δx and δy are the
field corrections connected with the interfusion effect of
the fields in the quark and s-quark sector.

Since the mixing of fields due to quark and s-quark
loop is weak (this is justified in numeric calculations) one
can assume that δx � 1 and δy � 1, and one can write

v1(x̄) = v1(x + δx) = v1(x) +
∂v1(x)

∂x
δx, (30)

v2(ȳ) = v2(y + δy) = v2(y) +
∂v2(y)

∂y
δy, (31)

v3(x̄, ȳ) = v3(x + δx, y + δy) = v3(x, y). (32)

After simple transformations we can find δx and δy:

δx =

∂v3(x, 0)
∂x

− ∂v3(x, y)
∂x

∂2v1(x)
∂x2

,

δy =

∂v3(0, y)
∂y

− ∂v3(x, y)
∂y

∂2v2(y)
∂y2

. (33)

Hence we obtain x̄ = x + δx and ȳ = y + δy.
These results on the field strengths determined by

means of numeric investigation of the total EP are sum-
marized in Tables 1 and 2.

In Tables 1 and 2, in the first column we show the
inverse temperature. In the second one the strengths of
magnetic and chromomagnetic fields are adduced for the
case of the quark and the s-quark EP describing each of
the fields separately. The next column gives the field cor-
rections in the case of the total quark and s-quark EP. The
fourth column presents the relative value of the correc-
tions. The following column gives the resulting strengths
of magnetic (x̄ = x+δx) and chromomagnetic (ȳ = y+δy)
fields, respectively. In the last column the strengths of the
generated fields in the SM are given for comparison [7].

As is seen, the increase of the inverse temperature leads
to decreasing strengths of the generated fields. This de-
pendence is well in accordance with the picture of the
universe’s cooling.

Table 1. The strengths of generated magnetic field

MSSM SM
β x δx δx/x, % x̄ x̄

0.1 0.3813 1.58 × 10−2 4.14 0.3971 0.7000
0.2 0.10021 2.45 × 10−3 2.44 0.10265 0.20075
0.3 0.046199 7.19 × 10−4 1.56 0.046917 0.069945
0.4 0.026804 1.97 × 10−4 0.73 0.027000 0.039964
0.5 0.017675 1.19 × 10−4 0.67 0.017794 0.029953
0.6 0.0120559 5.20 × 10−5 0.43 0.0121079 0.0199508
0.7 0.0086022 2.82 × 10−5 0.33 0.0086303 0.0099620
0.8 0.0065687 1.72 × 10−5 0.26 0.0065859 0.0099381
0.9 0.0052535 1.13 × 10−5 0.22 0.0052648 0.0099759
1.0 0.0043400 8.10 × 10−6 0.19 0.0043481 0.0099643

Table 2. The strengths of the generated chromomagnetic field

MSSM SM
β y δy δy/y, % ȳ ȳ

0.1 0.510146 5.28 × 10−6 0.0010 0.510151 0.800301
0.2 0.133035 1.73 × 10−6 0.0013 0.133037 0.199761
0.3 0.0603172 8.85 × 10−7 0.0015 0.0603181 0.0899012
0.4 0.0347127 5.20 × 10−7 0.0015 0.0347132 0.0499116
0.5 0.0225367 3.59 × 10−7 0.0016 0.0225371 0.0398880
0.6 0.0161563 2.26 × 10−7 0.0014 0.0161565 0.0299018
0.7 0.0115808 1.53 × 10−7 0.0013 0.0115810 0.0199558
0.8 0.00859328 1.19 × 10−7 0.0014 0.00859340 0.0199267
0.9 0.00672412 9.94 × 10−8 0.0015 0.00672422 0.0098830
1.0 0.00547797 9.01 × 10−8 0.0016 0.00547806 0.0098250

From the above analysis it follows that in the consid-
ered temperature interval the presence in the system of
both fields leads to increasing of each of them in contrast
with the SM case. In the latter one the strengths of the
combined fields are decreased as compared to the sepa-
rate generation. This is the consequence of the s-quark
loop contributions depending as the quark loops on both
of the fields.

With temperature decreasing this effect becomes less
pronounced and disappears at comparably low tempera-
tures, β ∼ 1.

4 Discussion

Let us discuss the results obtained. As we elaborated
within the EP including the one-loop and the daisy dia-
grams, in the MSSM at high temperatures both the mag-
netic and chromomagnetic fields have to be generated.
This vacuum is stable, as follows from the absence of imag-
inary terms in the EP minima.

If quark and s-quark loops are discarded, both of the
fields can be generated separately. All these states are
stable, due to the magnetic mass ∼ g2(gH)1/2T of the
transversal gauge field modes. As was already shown in [7],
the imaginary part arises for field strengths larger than the
ones generated in the SM. As we have seen, the strengths
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Table 3. The contribution of quarks, s-quarks, s-leptons and charginos to the EP

β quarks s-quarks s-leptons charginos

0.1 8.09496 × 10−2 1.29860 × 10−2 1.08818 × 10−2 1.90295 × 10−3

0.2 5.51654 × 10−3 5.13130 × 10−4 6.28152 × 10−4 1.16324 × 10−4

0.3 1.13926 × 10−3 6.77157 × 10−5 1.13423 × 10−4 2.20561 × 10−5

0.4 3.78190 × 10−4 1.51991 × 10−5 3.28547 × 10−5 6.66057 × 10−6

0.5 1.60125 × 10−4 4.51358 × 10−6 1.24231 × 10−5 2.60925 × 10−6

0.6 8.11555 × 10−5 1.64583 × 10−6 5.07024 × 10−6 1.09729 × 10−6

0.7 4.16467 × 10−5 6.18990 × 10−7 2.28091 × 10−6 5.06211 × 10−7

0.8 2.31108 × 10−5 2.55271 × 10−7 1.18256 × 10−6 2.68001 × 10−7

0.9 1.42387 × 10−5 1.18144 × 10−7 6.76190 × 10−7 1.55895 × 10−7

1.0 9.48895 × 10−6 5.96475 × 10−8 4.14475 × 10−7 9.68813 × 10−8

Fig. 1. The dependences of the strengths of the generated
magnetic fields (H) on the inverse temperature (β). The solid
line is the magnetic field strength in the MSSM and the dashed
line in the SM

of the generated fields are reduced due to the s-particle
sector of the MSSM. This vacuum state is more stable as
compared to the SM case. In Table 3 the contribution of
quark and s-particle sectors of MSSM to the EP is shown.

The result on the stabilization of the charged gauge
field spectra is very important. It has relevance not only
to the problem of the consistent description of the genera-
tion of magnetic fields but also to the related problem on
the symmetry behavior in external magnetic fields inves-
tigated in the MSSM recently in [9,13].

As is seen from Figs. 1 and 2, presenting the results of
numeric computations within the exact EP, the strengths
of the generated fields are increasing when the tempera-
ture is increasing. It is also found that the dynamics of
curves obtained in the SM [7] are in good agreement with
our numeric calculations.

For the ground state possessing the magnetic and the
chromomagnetic fields it is reasonable to expect the ex-
istence of these fields in the electroweak transition epoch
for both the SM and the MSSM. The state is stable in
the whole considered temperature interval. The imaginary
part in the EP exists for the external fields being much
stronger than the strengths of the spontaneously gener-

Fig. 2. The dependences of the strengths of the generated
chromomagnetic field (H3) on the inverse temperature (β).
The solid line is the chromomagnetic field strength in the
MSSM and the dashed line is that of the SM

ated ones. The mixing of magnetic and chromomagnetic
fields arising from the quark and the s-quark sectors of the
EP is weak. In the MSSM, the change of the field minima
in the inclusion of the field mixing does not exceed 4 per
cents. In the SM these values do not exceed 2 per cents.
This is due to the strong dependence of the s-quark loop
on the strengths of both fields.

During the universe’s cooling the strengths of the gen-
erated fields are decreasing. This is in agreement with
what is expected in cosmology.

One of the consequences of the results obtained is the
presence of a strong chromomagnetic field in the early uni-
verse, in particular, at the electroweak phase transition
and, probably, until the deconfinement phase transition.
The influence of this field on the phase transitions may
bring about new insights into these phenomena. As our
estimate showed, the chromomagnetic field is as strong
as the magnetic one. So the role of strong interactions in
the early universe in the presence of the field needs more
detailed investigations as compared to what is usually as-
sumed [3].

We would like to notice that in the literature devoted
to investigations of the quark–gluon plasma in the decon-
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finement phase carried out by non-perturbative methods
the vacuum magnetization at high temperature has not
been accounted for (see, for instance, the recent paper of
[25] and references therein). From the point of view of the
present analysis (as well as other studies carried out al-
ready in perturbation theory [4–6]) these investigations
are incomplete. The generation of the chromomagnetic
field at high temperature has to be taken into considera-
tion.
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